
Results We developed software to interface with different components of the SDN enabled Hadoop cluster to build a
visualization of the network performance after job execution. The visualizations will enable a user or system administrator to
understand the characteristics of the shuffle phase during the job. The individual graphs are numbered and described below.!
!

Motivation!
!

The shuffle phase of a Hadoop MapReduce
job consists of transfers of data from maps to
reduce nodes. In the literature, a network
bottleneck is often mentioned during this
phase negatively impacting the job’s overall
execution time.!
!
Hadoop system administrators do not

possess tools to monitor the network
performance of running MapReduce jobs and
understand whether network optimizations
could improve job run time. "

Materials and methods"
!

We assembled a small Hadoop cluster using
the following equipment:!

!

•  (1) Dell Precision 330 workstation!
•  (6) Sun Ultra20-M2 workstations!
•  (2) Pica8 Pronto 3290 OpenFlow switches!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

The machines were configured as a single
master with six slave nodes, connected via two
independent networks. On each slave node,
Open vSwitch was used to control and monitor
traffic on the data network. The virtual and
physical switches were controlled by
Floodlight on the head node.!

Objectives!
!

Using Software Defined Networking (SDN)
and the Hadoop system, build a distributed set
of tools for a HPC environment to monitor,
record, and visualize network performance of
submitted jobs during and after execution.!

William Clay Moody"
wcm@clemson.edu"

"
Jason Anderson"
jwa2@clemson.edu"

"
Dylan Wagenseller"
twagens@clemson.edu"

"
K.-C. Wang"

kwang@clemson.edu"
"

Amy Apon"
aapon@clemson.edu ""

① In this graph, the total data received
by reducers on each node is
categorized by the source node.
Large bar segments indicate greater
map output, which would ideally be
sent to reducers on the same node.
Statistics for this graph were gathered
by measuring network traffic at each
node with OpenFlow.!

!

② A heat map presents the size of the
data transferred from each map to
each reduce regardless of the
assigned task tracker. This
information is gathered from the
individual task tracker logs within
Hadoop. Discovering reduce and
map tasks with imbalance shuffle
traffic is quickly accomplished in this
visualization.!

③ The grid shows map and reduce tasks
assignments to task trackers. Blue
stars represent map tasks and red
squares represent reducers and both
are listed along the y-axis. This data
was gathered from the Hadoop
JobTracker via its REST API. This
graph helps visualize how the maps
and reducers were distributed in a
certain Hadoop job.!

!

④ A timeline displays the fetching of
map task output by each reduce and
the quantity of the data. The
information to build this
visualization is collected from the
individual task tracker logs within
the Hadoop cluster. This view allows
a user to understand the distribution
of the network traffic over the
lifetime of the job and understand
when the load is maximized on the
network.!

⑤ Querying the flow statistics from
each virtual switch at specificed
intervals builds a cumulative
distribution view of the network
traffic for each destination node.
This visualization can reveal if any
reducers were underutilized during
job execution.!

Conclusions!
!

Using Software Defined Network and the
Hadoop System, we developed a set of tools
allowing users to monitor and visualize the
network behavior of a Hadoop MapReduce
job. This framework can be used in further
research on Hadoop network performance.!
!
Our environment enables system

administrators and users to quickly
understand the network behavior of a
MapReduce job with node-to-node, task-to-
task, task-to-node, and timeline visualizations.!

Future Work!
!

The next step in our project is to use our
tools to discover under which network
conditions a network bottleneck occurs and
whether these conditions are likely in a
production Hadoop cluster. Then, we will use
SDN to change the network configuration to
try and alleviate the performance degradation.!
!
To do this, we will use SDN to manipulate

the topology such that shuffle traffic travels
the least amount of hops possible. To that end,
we have started on Phase II of our SDN
testbed:!
!
In preparation, we have added six more

nodes to the cluster and equipped each node
with a total of six network interfaces. Four of
the interfaces on each node connect to one of
the OpenFlow switches, which allows us to
programmatically configure the network
topology to simulate different computing
environments.!

Citations!
!
Guohui Wang, T.S. Eugene Ng, and Anees Shaikh. Programming Your
Network at Run-Time for Big Data Applications. In Proceedings of the
first workshop on Hot topics in Software Defined Networks (HotSDN '12).
ACM, New York, NY, USA, 103-108. !
!
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner. OpenFlow: enabling innovation in
campus networks, ACM SIGCOMM Computer Communication Review,
38(2):69–74, April 2008.!
!
Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation - Volume 6
(OSDI'04), Vol. 6. USENIX Association, Berkeley, CA, USA, 10-10!

