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ABSTRACT
Software-defined networking combined with distributed and
parallel applications has the potential to deliver optimized
application performance at runtime. In order to investi-
gate this enhancement and design future implementation, a
datacenter with a programmable topology integrated with
application state is needed. Towards this goal, we introduce
the Flow Optimized Route Configuration Engine (FORCE).
The FORCE is an emulated datacenter testbed with a pro-
grammable interconnection controlled by an SDN controller.
We also utilize Hadoop as a case study of distributed and
parallel applications along with a simulated Hadoop shuffle
traffic generator. The testbed provides initial experimental
evidence of support to our hypothesis for future SDN re-
search. Our experiments on the testbed show a difference
in application runtime a factor of over 2.5 times on shuf-
fle traffic for Hadoop MapReduce jobs and the potential for
significant speedup in warehouse scale data centers.

Categories and Subject Descriptors
C.2.1 [Computer-Communications Networks]: Network
Architecture Design—Network topology ; C.2.4 [Computer-
Communications Networks]: Distributed Systems—Dis-
tributed Applications
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1. INTRODUCTION
Software-defined networking (SDN) technologies such as

OpenFlow [22] have emerged in the last few years as a promis-
ing new approach to operating computer networks. The
seminal feature of SDN is centralized control of packet for-
warding via software controllers. The implication is phe-
nomenal. Given centralized knowledge of the complete net-
work topology and traffic demand, optimizing and fault proof-
ing of traffic forwarding can be conveniently implemented
and invoked in the SDN controllers. Unlike creation of a new
protocol or protocol stack, introduction of SDN is a change
of paradigm – as its centrally optimized and proactive con-
trol methodology presents a stark difference to today’s dis-
tributed and reactive Internet architecture. Coupled with
high speed networking technologies (100 Gbps in the Inter-
net core and 10 Gbps to the edge), the centralized control
methodology makes an even stronger case for achieving ex-
tremely high end-to-end networking performance via central
optimization. The future is promising, but work is needed to
inspect nearly all aspects of networking that we have grown
accustomed to today.

In the context of data-intensive computing, the most di-
rect benefit brought by SDN is the ability to flexibly and
reliably control network bandwidth amongst compute hosts
and storage [18]. The collection of the last two years’ re-
search presented at top conferences for cluster, grid, HPC
and cloud computing have arrived at the following common
conclusions: First, virtual machines running in modern data
centers are increasingly the desired vehicle for data inten-
sive computing due to their clean OS isolation, fast config-
uration, pause, migration, termination, and low setup over-
head compared to direct execution over bare metal servers
[12]. Secondly, benchmark tests have repeatedly confirmed
performance bottlenecks due to low disk I/O or network
throughput instead of processing capacity [18]. Finally, en-
abling virtual machines with dedicated resources, includ-
ing processor cores, storage, and network bandwidth sig-
nificantly enhances performance [8].

The research trend clearly suggests that effective resource
allocation in a data-intensive distributed environment is a
top priority for the community. While allocating processors



for data-intensive computing tasks using batched task sched-
ulers is a well-learned practice, the same is not as well under-
stood for storage and network resources. To date, the ma-
jority of data centers provide best-effort network through-
put among processors and aggressively over-provision the
raw network bandwidth to achieve acceptable performance
for users. Where high network throughput is absolutely
needed, it is offered as a premium service by placing the
tasks on separate carefully admission-controlled hardware
with high-speed connectivity. This practice results in a sub-
stantial loss of potential computing capacity and, even more
crucially, severely limits HPC data centers’ ability to host
time-sensitive applications. In the case of scientific work-
flows in such disciplines as genomics, synthetic chemistry,
atomic physics and beyond, very large data transfer is the
cause for severe bottlenecks. Today, this is addressed by
custom planning and over-provisioning of networks among
dedicated HPC centers for the exact data flows expected.
The approach will not scale beyond a few heavily invested
sites, such as those established for the LHC project [10].
To overcome such limitations, methodologies for joint allo-
cation of compute, network, and storage resources must be
studied.

Much potential exists in the integration of SDN technolo-
gies and performance optimization of distributed and paral-
lel applications within a datacenter. Building entirely new
experimental data centers or modifying existing production
data centers to study this investigation is costly in time,
dollars, and operational output. Historically, researchers
have used testbeds or controlled infrastructure to experi-
ment with information technology systems resembling real
systems and networks. This approach is advantageous to the
SDN and datacenter researcher and can provide significant
gains if establish with realistic conditions and instrumented
to give constant, measurable results. Our results are the
first step to provide a capability that will lead to a roadmap
for developing methodologies to study this integration.

In this paper, we introduce the Flow Optimized Route
Configuration Engine (FORCE), which is a testbed with an
emulated multi-rack datacenter with programmable inter-
rack topology. The FORCE provides a cost effective re-
search environment that allows initial exploration into SDN
enabled optimizations of parallel and distributed applica-
tions. The FORCE allows researchers to get a much earlier
understanding the potential impact of network reconfigura-
tions on application run-time at a fraction of the financial
and time costs associated with deploying major network and
computing reorganization into a production datacenter.

The contributions of this work include the following:

• The design and prototype development of a datacen-
ter testbed with a reprogrammable network topology.
The testbed includes a Virtual Topology Engine that
builds virtual network topologies over physical links
with SDN flows and a Flow Network Evaluation sys-
tem to generate a network congestion estimation score.

• The design and development of a Hadoop shuffle traffic
simulator designed to place realistic load on a datacen-
ter network.

• Experimental results to show that placement of com-
putation racks within a datacenter topology can have
significant impact of the Hadoop shuffle traffic comple-
tion time.

The remainder of this paper is organized as follows. In sec-
tion 2, we provide motivations for our research along with
background information on software-defined networking. In
section 3, we describe our architecture of the FORCE with
its hardware, software, and custom integrations. In section
4, we discuss our use case of Hadoop and the shuffle traffic
simulator. In section 5 we outline our experiments using the
FORCE tool along with analyzing the results. We discuss
related works in section 6. We summarize our paper by pre-
senting our conclusion and anticipated future works enabled
by the FORCE in section 7.

2. MOTIVATION
In this section, we describe our motivations and goals for

the research infrastructure testbed, which includes the en-
abling capabilities of software-defined networking. Our over-
all research goal is to investigate technologies and methods
for optimizing the performance and energy efficiency of par-
allel and distributed applications in a cluster or cloud en-
vironment. Our goals include the study of how the perfor-
mance of distributed applications is impacted by the net-
work topology of the datacenter [29]. Analytic and simu-
lation performance models often do not capture all of the
characteristics of real applications in a complex distributed
environment. At the same time, experimenting with real
systems and manipulation of real datacenter topologies can
be very expensive in time and dollars. It is not practical
to reconfigure an academic production datacenter topology
for experimental studies, for example. However, SDN is a
technology that can be used to easily and temporarily recon-
figure physical and virtual network topologies. Our testbed
is a low-cost experimental platform that uses a networked set
of single computers and virtualization to emulate the perfor-
mance of whole racks of machines in a datacenter and their
applications. The testbed provides an SDN infrastructure
that can be used to study how changes in network topology
can impact the performance of the applications.

Several research goals lead us to the integration of SDN
and parallel and distributed applications. First, we desire
to build a low-cost reconfigurable testbed. We use a mod-
est number of workstations and custom software to emulate
the behavior of the entire datacenter. Secondly, we strive
to use the testbed to study the effects of network topolo-
gies on distributed applications. Our testbed is configured
with SDN hardware. Our research goals include using the
testbed to gain insight and an early indication of which hy-
potheses of the use of SDN are worthy of further investi-
gation. Lastly, we would like to understand how execution
time modifications of the topology of the datacenter can be
used to optimize application performance.

The relationship between network throughput and per-
formance in the Hadoop distributed computing platform has
been studied in the literature. Network congestion can delay
the movement of data between compute nodes in the shuf-
fle phase of a MapReduce job as reduce tasks fetch data
from completed map tasks [29]. These delays can cause
overall performance degradation as well as straggler tasks
that lengthen the total run time and overuse the available
task slots [11]. Network performance also affects operations
in the cluster’s underlying distributed file system, such as
data replication in HDFS [28] and bulk transfers in Or-
angeFS/PVFS [26].



Congestion in the network can arise for several reasons,
such as inadequate provisioning of overall network resources
or imbalance in the application workload. Congestion can
also occur because of suboptimal decisions or lack of adap-
tivity in the allocation of the available network resources. In
typical cluster configurations, multiple paths exist between
any two nodes. Although network switches incorporate for-
warding algorithms that attempt to balance traffic across
multiple paths, legacy load-balancing algorithms on switch-
ing hardware spread traffic based on hashing the source and
destination address and protocol. [4] This limits coexistent
flows’ ability to leverage available capacity in the data cen-
ter network, causing congestion even when there is available
bandwidth in an alternate path. For short flow applications
such as MPI the performance can be more sensitive to la-
tency than throughput and the existing mechanisms for net-
work configuration and adaptation may often be adequate.
However, in data-intensive applications such as MapReduce
and its supporting file systems the workload tends to pass
data in very long flows. These types of applications are more
tolerant of latency and the predominant limiting factor in
performance is throughput. In these cases the performance
can be improved by execution time network allocation de-
cisions that are enabled through heightened visibility and
maneuverability of the network.

SDN allows a operator-managed controller such as Flood-
light [2] with a high level view of the network to remotely
program network switches through a protocol such as Open-
Flow [22]. The controller is capable of programming its asso-
ciated switches either reactively or proactively. In the reac-
tive case, a switch receiving a packet for which it has no for-
warding rules can query the controller to install rules match-
ing aspects of the packet’s header. The controller can also
respond to other events, such as a signal of switch failure,
to proactively install forwarding rules. Afterward, matching
packets are forwarded according to the installed rule.

3. ARCHITECTURE DESCRIPTION
In this section we describe the architecture design of the

FORCE testbed. We discuss the hardware, the off-the-
shelf software, and custom software designed by the research
team. We introduce our virtual topology engine and our
flow network evaluation system. A novel design aspect of
the FORCE is the use of single workstations to emulate en-
tire datacenter racks full of computing nodes. This emula-
tion allows us to study the inter-rack networking traffic for
distributed applications and to understand how topologies
impact performance.

3.1 Hardware
The hardware of the FORCE includes one primary server,

twelve client workstations, and two SDN-enabled switches.
We note that the testbed is extensible and scalable to a
very large size. This set of computers used in the testbed
is repurposed from upgraded student laboratories and com-
pleted research projects and is very low cost. The equipment
is installed in a location that allows students to have physi-
cal access to the equipment throughout the system building
and experimentation.

The primary server is a Dell Precision 330 workstation
powered with an 2.40 GHz Intel Core2 Quad processor with
4 GB of RAM. An additional dual-port gigabit Ethernet
card was added to the server to provide additional net-

work connections. The twelve client workstations are Sun
Ultra20-M2 workstations, each with a dual-core AMD Opteron
processor with 2 GB of RAM. Two additional dual-port gi-
gabit Ethernet cards were added to these workstations to
provide four additional network connections, bringing the
total Ethernet ports to six each.

The two network switches are Pica8 Pronto 3290 48-port
gigabit Ethernet switches. Each switch is OpenFlow en-
abled. Two VLANs are established on one SDN-enabled
switch for the control and access networks. The server
and the workstations each have one connection to both of
these VLANs. The remaining 48-port switch is connected to
each of the additional four gigabit Ethernet switches of the
twelve workstations. This switch allows each workstation
to be connected to a maximum of four other workstations.
This switch is the primary target of the reprogrammability
of the FORCE testbed.

3.2 Software
The FORCE package contains a number of important

standard and custom software suites and tools for managing
the testbed and quantifying experimental results.

3.2.1 Open Source Software
The FORCE utilizes several open source software pack-

ages without modification, including Ubuntu Linux 12.04.2,
Open vSwitch 1.11.0, Floodlight v0.90, and Python 2.7. The
server and workstations in the cluster all use Ubuntu Server
12.04.2 as the base operating system.

Since the release of Linux kernel version 3.3, Open vSwitch
has been the default bridge system. Open vSwitch is used to
provide a virtual top-of-rack switch on each of the 12 work-
stations. This allows each workstation to emulate one dat-
acenter rack with a configurable number of computational
nodes. There is a many-to-many communication network
between these virtual switches through the 48-port Pica8
physical switch as described above.

The server node serves as the central management node of
the SDN-enabled testbed, using Floodlight v0.90 as the con-
troller software. The server is configured to control the two
physical switches along with the 12 virtual switches. When
a new topology is deployed, this node issues the OpenFlow
commands to install new flows on the switches.

Python 2.7 is core to the operation of the FORCE. Python
scripts are used to select topologies, issue OpenFlow com-
mands, start experiments, collect data, and build graphs.
The specific software packages are discussed in the remain-
der of this section and also in section 4.

3.2.2 Virtual Topology Engine
The core of the virtual topology package is our custom

developed force tool, which implements a virtual network
topology by installing forwarding rules on the SDN switches
in a cluster. The topology is described in a series of layers
using the NetworkX Python package [1]. Each layer main-
tains a network graph, as well a method for finding a path
between any two vertices. The lowest layer describes the
physical topology of hosts, switches, interfaces, and links, in-
cluding characteristics such as hardware addresses and link
speeds. The tool then applies subsequent graph layers that
abstract each previous layer, building the virtual topology
by translating edges into paths on the underlying graph.
As a whole, this layered abstraction approach allows us to



map desired connectivity among vertices on the highest level
graph to the lowest level flow rules to be installed onto the
SDN switches.

As an example, a virtual 2D-torus topology can be im-
plemented in three layers, as shown in Figure 1. In the
first layer, the physical network is described. In the case of
our experimental cluster, we define a single 48-port switch,
12 virtual switches with 4 links each to the central switch,
and 12 hosts with links to the virtual switches. Then, we
describe the desired topology, where each virtual switch is
connected to its neighbor in a 2D-torus. Each edge in the
virtual topology represents a path in the underlying topol-
ogy, so the edge vs1, vs2 in Figure 1(b) translates to the
path (vs1, pronto, vs2) in Figure 1(c). The topmost layer de-
scribes the hosts that are logically connected, and each edge
describes the full path between those hosts: the edge h1, h6
translates to the path (h1, vs1, pronto, vs2, pronto, vs6, h6).
Rules are then installed on the SDN switches: for this path,
rules will be installed to forward traffic on pronto, vs1, vs2,
and vs6.

3.2.3 Congestion Metric
As our software was written to experimentally evaluate

network topologies, we wrote a tool to predict the conges-
tion level of the network given a set of source/sink pairs.
This tool approximates the mean of all flows’ congested flow
potentials divided by their flow potentials when free of con-
gestion, if all concurrent flows in the network were in a state
of equilibrium. We refer to this metric as the Link Sharing
Score (LSS), where 0 < LSS ≤ 1. An LSS of 1 means that
there are no overutilized edges in the flow network, and a
score of 0.5 would describe a network where congestion cuts
flow rates to 50%, on average.

(a) Source/sink pairs (a,f) and
(b,g) with paths
(ac, cd, de, ef) and
(bc, ce, eg).

(b) Source/sink pairs (a,f) and
(b,g) with paths
(ac, ce, ef) and
(bc, ce, eg).

Figure 2: In (a), the two paths do not share a link, and the LSS
algorithm assigns a score of 1. In (b), edge ce is shared, cutting
both flows to half capacity and giving a mean congestion score
of 0.5.

In Algorithm 1, topo is an object containing a graph repre-
sentation of the computer network and a method that com-
putes a static path between a pair of nodes. pairs is a set
of source-sink pairs, representing all concurrent flows on the
network. In our experiments, this was a list of all mapper-
reducer relationships for a set of simulated Hadoop jobs.

Algorithm 1 Link Sharing Score

1: procedure LSS(pairs, topo)
2: for all (src, dst) in pairs do
3: path← topo.path(src, dst)
4: path rate← min link(path)
5: for all edge in path do
6: edge.usage← edge.usage + path rate
7: end for
8: end for
9: for all (src, dst) in pairs do

10: path← topo.path(src, dst)
11: path rate← min link(path)
12: rate← path rate
13: for all edge in path do
14: scaled rate← path rate×max(1, edge.cap

edge.usage
)

15: rate← min(rate, scaled rate)
16: end for
17: total← total + rate

path rate
18: end for
19: return total

len(pairs)

20: end procedure

The first loop of the algorithm assigns a usage amount to
each edge in topo by summing the potential rate of all flows
through that edge. Line 3 finds the path from src to dst,
which could be the shortest path or any other walk that has
been defined. Line 4 establishes the potential uncongested
rate of a flow by finding the lowest capacity edge in the path.
In lines 5 and 6, this rate is added to the usage of each edge
in the path. This may or may not result in an overutilized
edge.

The second loop finds the congested rate of each flow by
finding the minimum capacity of the congested edges in its
path. Lines 10 and 11 again establish the path and uncon-
gested rate along that path. Lines 12-16 find the lowest
shared capacity edge in the path, with Line 14 calculating
the shared capacity based on the fractional usage of the edge
and Line 15 receiving the congested rate. Lines 17 and 19
compute and return the mean quotient of the congested rates
to the uncongested rates.

4. USE CASE: HADOOP
We select Hadoop MapReduce for the representative use

case for demonstration of the utility of the FORCE testbed.
The literature [29] describes the potential speedup of MapRe-
duce shuffle traffic that is possible by positioning datacenter
racks that contain the reduce tasks in close network proxim-
ity to datacenter racks that contain the map task from the
same MapReduce job. This proposed enhancement requirs
the dynamic reallocation of point-to-point connections be-
tween top of rack switches in a two-dimensional torus topol-
ogy. Our testbed is ideally suited for testing this optimiza-
tion. In this section we describe the use of the FORCE
to experimentally test how MapReduce performance is im-
pacted by reallocation of point-to-point connections and to
determine if further research and investigation of the method
is justified.

4.1 Hadoop Background
Hadoop MapReduce is the most popular MapReduce fram-

work. It is an open-source project that implements a parallel



(a) The topmost layer,
defining all possible
source/destination pairs.

(b) Each abstraction layer defines the paths
through the previous layer, as well as a
routing algorithm between nodes on this
layer.

(c) The physical topology layer, consisting
of hosts with virtual switches, each con-
nected through 4 interfaces to a central
SDN-enabled switch.

Figure 1: A virtual topology is described as a sequence of abstraction layers, with each edge representing a path on the layer
below it. In this series of diagrams, h1, h6 in (a) translates to the path (h1, vs1, vs2, vs6, h6) in (b), which then becomes
(h1, vs1, pronto, vs2, pronto, vs6, h6) in (c). Paths on the lowest level become sets of rules to be installed on switches pronto, vs1,
vs2, and vs6.

programming environment for computation over very large
data sets using a cluster of commodity servers and worksta-
tions. We focus on the behavior and architecture of Hadoop
V1.0 in our testing environment.

Hadoop has a distributed network file system implemented
in a client-server model using block level replication across
the cluster. The NameNode is the metadata server for the
Hadoop Distributed File System (HDFS). DataNodes store
the actual data blocks with a default size of 64 MB. The
mechanism of HDFS are not relevant to our work, but future
implementations could focus on the data read, write, and
replication traffic.

Like the distributed file system, the MapReduce compu-
tation model also implements a single central management
node, JobTracker and multiple computation nodes called
TaskTrackers. DataNodes can reside on the same machine
as TaskTrackers, thus allowing the architecture to take care
of the adage “moving the data to the computation.” The
JobTracker is responsible for delegating the specific map and
reduce tasks for a submitted MapReduce job to a subset of
the TaskTrackers in the cluster. The JobTracker receives
heartbeat updates of the status of the TaskTrackers provid-
ing a timely completion of the job. A single TaskTracker
can be assigned both map and reduce tasks within the same
job. TaskTrackers for Hadoop clusters can be spread across
multiple computing racks in a datacenter.

A MapReduce job is made up of multiple map tasks and
multiple reduce tasks. A mapper takes an input set of data
in a key-value pair (K,V ) and outputs an intermediate key-
value pair (K′, V ′). The input to the reducer is an inter-
mediate key and the set of intermediate values for that key
(K′, {V ′

1 , V
′
2 , V

′
3 , ...}) from all the mappers across the clus-

ter. The reducer performs some computation on the set of
intermediate values and produces the final output value for
each key it was responsible for reducing. The entire possible
set of intermediate key values are partitioned into a single
partion per reducer. During the shuffle phase between map
and reduce, a reducer pulls its respective partition from each
mapper before beginning the reduce computation. This bulk
data transfer has been shown to be a network bottleneck in
MapReduce clusters.

The JobTracker for a MapReduce cluster, in concert with
the NameNode, is data locality aware for assigning map
tasks; however, it does not consider data locality for assign-
ing reduce tasks by default. Data locality awareness means
that the JobTracker assigns map tasks to the TaskTracker
which is the home to the input data in HDFS. This allows
the computation to be executed on the data with no net-
work transfer. As such, TaskTrackers can begin executing
as soon as they are assigned a map task. In our test environ-
ment reducers receive data from all the mappers and wait for
all maps to complete before calculating their output. Task-
Trackers are assigned reduce tasks and specific partitions on
a first come first serve basis with no consideration to map
output data location.

The division of possible intermediate key values is cus-
tomizable by the user on a job-by-job basis in a MapReduce
cluster. This functionality is provided by a partitioner. The
default partitioner for MapReduce is the HashPartitioner,
which applies a hash function to the key value and then
computes the remainder when the hash value is divided by
the number of reducers. This modulo math function pro-
vides the index of the R reducers that are responsible for
reducing the set of values associated with this key. The par-
titioner expects a uniform distribution of keys across the set
of reducers, in theory assigning each reducer 1

R
of the inter-

mediate keys. This partitioner does not consider the sizes of
the intermediate values that are associated with each inter-
mediate key. The difference between the actual measure of
the partition size and the theoretical size for each reducer is
called the reducer partition skew. This skew is a function of
the nature of the input values, the intermediate key set, and
associated size of the intermediate values, and is a factor
in the amount of network traffic between the mappers and
reducers.

4.2 Hadoop Shuffle Simulator
The nodes comprising the testbed are not robust enough

to run a real workload consisting of multiple Hadoop jobs or
multiple virtual Hadoop nodes. To solve this problem, and
to ensure that the testbed supports a realistic shuffle traffic
network load that corresponds to the traffic between data-
center racks, we implemented a Hadoop shuffle traffic emu-



lator within the FORCE. We implemented a centrally con-
trolled software suite that synchronizes bulk network data
transfers from map tasks to reduce tasks within the cluster.
These data transfers are the same as the movement of map
tasks outputs to reducers across the cluster as seen in the
shuffle phase of a real MapReduce job.

The Hadoop shuffle emulator reads configurations from a
set of files that describe the pseudo Hadoop cluster within
the FORCE. The cluster configuration file defines the num-
ber of emulated nodes within in each virtual rack, the num-
ber of TaskTrackers within each emulated node, the number
of map and reduce slots present per TaskTracker, and the
default HDFS block size. The workload configuration file de-
fines the number of jobs to be placed on the cluster during
an experiment, the input size of the data to be processed
by the job, and the type of MapReduce job for each job.
With the configuration variables retrieved from these files,
various workloads and workload execution scenarios can be
emulated within the FORCE without the need for robust
servers running multiple Hadoop virtual machines.

Given the set of configurations and experiments, the sys-
tem is able to deploy the emulated MapReduce jobs across
the cluster that perform transfer of shuffle traffic. Based
on the size of the data to be processed and the HDFS block
size, the system is able to determine the number of maps task
required for each job. The number of reduce tasks is deter-
mined by a default global parameter or specific argument on
a per job basis. The type of job to be run determines the
ratio of map task output relative to the block size. After
the system is configured with the number of map and re-
duce tasks per job and the size of the data transfer between
all the map tasks and the set of reduce tasks in each job,
the transfer of data from map tasks to reduce tasks begins.
Since we are only interested in studying the inter-rack traf-
fic, any map and reduce tasks that reside within the same
virtual datacenter rack do not transfer data.

5. EXPERIMENT DESIGN
In this section we describe the design of the experiments

using the FORCE and our Hadoop shuffle simulator that
study the impact of placement of reduce and map racks
within a datacenter. We describe the cluster configuration,
the workload placed on the environment, the data collected,
and the method of collection.

We initialized our cluster with the full set of 12 racks and
16 compute nodes per rack, with 8 map slots and 4 reduce
slots per node. This configuration emulates a cluster with
1536 map slots and 768 reduce slots. Using the method of
bin-packing placement [29], we ran three simulated MapRe-
duce jobs with reducers exclusively on three separate com-
puting racks. Each reducer rack had its own set of three
feeding map racks. Thus we had three distinct sets of map-
per and reducer racks divided across our datacenter.

In our first experiment, each experimental run consisted of
using the FORCE to build and record a random 4x3 two di-
mensional torus topology, beginning continuous shuffle traf-
fic from each map rack to its destination reduce rack, and
recording the total bytes transferred from each virtual top-
of-rack switch at each map rack. We ran 1000 experimental
runs and recorded the amount of data transferred at each
map rack at equally spaced times. These measurements al-
lowed us to compute the average transfer rate at each map.

Table 1: Mean Throughputs on Various Node Placements in a
2D-Torus

Node Placement Trials x̄ s
same 500 620.7 Mb/s 2.27 Mb/s

random 1000 563.6 Mb/s 79.78 Mb/s

In our second experiment, each run consisted of again ran-
domly placing the rack in different positions in the 4x3 torus
topology. We then began the flow of data between mappers
and reducers in deterministic sizes. We recorded the time
required to complete each of these data flows. This is dif-
ferent from the first experiment since less congested paths
allow the transfer to finish sooner, permitting straggler flows
to continue on a network free of congestion.

In both experiments, we established a baseline for com-
parison with randomized topologies by measuring the results
with 500 runs using a fixed network topology with no par-
ticular distinguishing characteristics.

5.1 Performance Evaluation
In this section we report evaluation results are on the net-

work performance and for the Hadoop MapReduce applica-
tion.

5.1.1 Network Performance Results
After sampling the mean transfer rate of 1000 random

topologies, we found that the mean and variance were sig-
nificantly different than obtained with 500 runs using the
baseline topology, as shown in Table 1. We also found that
the mean throughput for the baseline topology is 620.7Mb/s
while the mean throughput for the randomly set of topolo-
gies is 563.6Mb/s. The variance of measured throughputs of
the baseline is small, only 2.27Mb/s, whereas the variance
of measured throughputs of the set of 1000 randomly gener-
ated topologies is much larger, at 79.78Mb/s. This indicates
that there are topologies with better and/or worse conges-
tion characteristics. We also found that the baseline topol-
ogy had a mean transfer rate that was higher than that of
random topologies. These results provide the motivation for
future investigation into optimal topologies for the MapRe-
duce workloads.

Next, we used the described LSS congestion scoring algo-
rithm to calculate the theoretical mean congestion of each
topology. These scores correlate reasonably well (r2 = 0.677)
with the mean throughput of each topology, as shown in Fig-
ure 3. This tendency can also be seen in Figure 3, which sup-
ports our conjecture that certain topologies have less con-
gestion than others, given a certain set of flow patterns.

5.1.2 Hadoop Performance Results
The results from the second experiment of simulated Hadoop

jobs showed similar results. A histogram of simulated job
run times is shown in Figure 5. As shown in the chart, some
run times are over 2.5 times higher than base case times.
These worst case configurations ideally would be the topolo-
gies an intelligent system would strive to avoid. Addition-
ally, Figure 4 shows that the LSS congestion score correlates
with the completion time of jobs, which is to be expected as
the job completion time affected by the time spent transfer-
ring intermediate data. This correlation shows a congestion
score is potentially an early indication of shuffle time per-



Figure 3: The mean throughput of a set of 9 flows is shown, with each point representing a different random placement of nodes within
a 2D-torus. The congestion score, with 1.0 representing no shared links, correlates well with the observed throughput.

formance and can be used to intelligently select a topology
given a specific network flow pattern.

Figure 5: Histogram of simulated Hadoop shuffle times with ran-
dom placement of racks in two-dimensional torus topology.

5.2 Implementation Evaluation
The combination of the FORCE testbed along with the

Hadoop shuffle traffic simulator has allowed us to obtain
encouraging experimental results to support the hypoth-
esis about topological impact on MapReduce shuffle traf-
fic. Without the use of the testbed and traffic simulator,
a much more significant investment of research dollars and
time would have been needed to obtain experimental results
to support our hypothesis.

The experimental results suggest that further investiga-
tion is warranted. We are encouraged by the results and can
now begin further study of flow optimization under different
topologies. Our hypothesis that topology can impact the

completion time of MapReduce shuffle traffic is reinforced
through experimental results.

The use of the FORCE as an emulated testbed for study-
ing the effect of network topology on application perfor-
mance in a datacenter has proven beneficial. Continued use
of this research methodology could prove financially advan-
tageous to academic and research organizations.

6. RELATED WORKS
There is a breadth of research in many of the components

that compose the FORCE system. Researchers have focused
on software-defined networking, Hadoop shuffle traffic, and
data center network topologies. We highlight some work in
each of these categories in this section.

Pioneering SDN research efforts have explored use cases
for network virtualization [27], service insertion [3, 20, 25],
load provisioning [17, 30], network debugging [16], and pro-
gramming methods. Our work seeks to harness the promise
and potential of those works in the area of datacenter topol-
ogy optimizations.

Many solutions have been proposed for minimizing the
time and size of Hadoop shuffle traffic. A theoretical model
that inspired our initial testbed hypothesis suggests run-
time reconfiguring of topologies can optimize big-data pro-
cessing [29]. This work though lacks implementation and ex-
perimental results. Our work is the first step in expanding on
some of their ideas. Other research has focused on the reduce
task scheduling [14, 15] and the partitioning function [19].
As these works look to schedule tasks and partitions to im-
prove shuffle traffic performance, we look to schedule the
network to optimize application performance. Many works
have looked at OpenFlow enhancements for Hadoop traffic
in general [21,24,31]. These works use software defined net-
work to create prioritized flows and logical paths. Our work
is focused on reconfiguring physical network topology with
on-demand point to point links for top of the rack switches.

There is increasing interest in the topology of data cen-
ters with researchers focusing on decreasing cost, improving
application performance, and lowering power consumption.



Figure 4: Simulated Hadoop job completion time also correlates with network congestion. The difference between optimal and suboptimal
configurations can have significant effect on the overall time taken.

New data center topologies have been proposed [5, 6, 13, 23]
while others have proposed SDN enhancements to the flows
within current topologies [32]. Finally, research is even fur-
ther growing in understanding network characteristics and
optimization in production data centers [7, 9]. These ad-
vantages and system gains of these works could be deployed
within a reprogrammable topology when certain conditions
exist. Our work leads to a future mechanism to provides
this features when at the optimal time.

7. CONCLUSION
We have presented the Flow Optimized Route Configura-

tion Engine (FORCE), a datacenter testbed emulator with
a programmable interconnection controlled by an SDN con-
troller. The FORCE allows researchers to get an early indi-
cation of the worthiness of data center topology hypothesis.
These experimental results come without the cost in time or
funding of building production level data centers. Addition-
ally, the system features a Virtual Topology Engine, a Flow
Network Evaluation System, and a Hadoop shuffle traffic
simulator. We have presented initial experimental results
to suggest that datacenter topology, specifically placement
within a 4x3 2-D torus network, can impact the time to
shuffle intermediate results from a MapReduce job.

In the future, we plan to build a complete Hadoop traffic
simulator, upgrade the emulated rack workstations, and de-
velop a system that will provide execution time adaptivity
and maneuverability of datacenter topology to steer away
from worst case scenarios. We also plan to deploy and val-
idate our hypotheses in production data centers with SDN
capabilities.
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