
Defensive Maneuver Cyber Platform Modeling with
Stochastic Petri Nets

William Clay Moody, Hongxin Hu, Amy Apon
School of Computing
Clemson University
Clemson, SC, USA

wcm,hongxih,aapon@clemson.edu

Abstract—Distributed and parallel applications are critical
information technology systems in multiple industries, including
academia, military, government, financial, medical, and trans-
portation. These applications present target rich environments
for malicious attackers seeking to disrupt the confidentiality,
integrity and availability of these systems. Applying the military
concept of defense cyber maneuver to these systems can provide
protection and defense mechanisms that allow survivability and
operational continuity. Understanding the tradeoffs between
information systems security and operational performance when
applying maneuver principles is of interest to administrators,
users, and researchers. To this end, we present a model of a
defensive maneuver cyber platform using Stochastic Petri Nets.
This model enables the understanding and evaluation of the
costs and benefits of maneuverability in a distributed application
environment, specifically focusing on moving target defense and
deceptive defense strategies.

I. INTRODUCTION

Multiple institutions in academia, industry, and government
have discovered the necessity of parallel and distributed com-
puting in data driven business processes for the solution of
complex computational problems. The significant financial
investment and operational reliance of these systems create
critical infrastructure that is tightly bound to the success of
the organization. The security of these platforms is vital to
survival of these establishments.

Malicious actors seeking financial or intelligence gains are
targeting supercomputers and distributed computing centers at
an increasing rate [1], [2], [3]. Their methods and efforts to
disrupt the confidentiality, integrity, and availability of the sys-
tems require network security professionals and researchers to
invest remarkable amounts of time and money into protecting
these assets. We argue that one approach to improving system
security is the application of military doctrine and tactics to the
defense of distributed and parallel applications. In this paper
we focus on extending the military concept of maneuver to
the defense of cybersystems.

Maneuver is one of the U.S. Army’s nine Principles of
War [4]. Maneuver includes the application of combat power
to maintain an advantage over the enemy. This flexible and
dynamic employment of resources ensures success by keeping
adversarial conditions imbalanced and thus reduces failures,
compromises, and vulnerabilities. The non-military use of the
word maneuver describes an action that is not random or
without purpose, but one that is clever or skillful. In both

environments the word maneuver implies deliberate movement
and actions taken to achieve a specific purpose. Defensive
maneuver in cyberspace operations has been broken down into
four basic forms [5]. These forms are: perimeter defense in
depth, moving target defense, deceptive defense, and counter
attack. In this work, we focus on applying moving target de-
fense and deceptive defense for maneuverability in distributed
and parallel applications.

Security and usability have always been at odds with each
other in information systems. Adding maneuverable elements
and features into distributed and parallel applications affects
the performance and operational output of the system. Our
goal is to understand and characterize how these additional
features can improve security while limiting the impact on
operations. Our approach is to develop a model of these
processes and systems and to use the model for understanding
and evaluating these trade-offs.

Our work with the modeling the defensive maneuver cyber
platform provides the following contributions:
• A Stochastic Petri Net (SPN) model of a defensive

maneuver cyber platform utilizing moving target defense
and deceptive defense tactics.

• An analysis of our SPN model to understand the trade-
offs between security and operations in defensive maneu-
ver cyber platform.

• Recommendations for how to use and extend our current
SPN model to build prototype systems implementing
moving target and deceptive defense in parallel and
distributed applications.

The remainder of this paper is organized as follows: Section
II provides the background information needed for understand-
ing the system model. Section III describes the design goals of
the defensive maneuver cyber platform and its characteristics.
We provide analysis of our system in Section IV. We discuss
related works and present our conclusions in Sections V and
VI, respectively.

II. BACKGROUND

A. Military Maneuver and Cyberspace

In 2010, William J. Lynn III, former United States Deputy
Secretary of Defense, publicly released the details of a previ-
ously classified incident of the spread of malicious computer

code across the U.S. military’s unclassified and classified
computer networks [6]. This malware was the product of a
foreign intelligence service and spread through the unautho-
rized movement of USB based flash drives between computing
systems with different levels of classification. The efforts
of the Department of Defense to counter the attack was
known as Operation Buckshot Yankee and was managed at
the highest levels of the Department due to the sensitivity and
urgency. The highly visible release of information to the public
highlighted the scope of daily cyber attacks and intrusions
faced by Pentagon and its military. This incident highlighted
the need for improved operations and defense in the newest
war fighting domain.

Since the mid 1940s, war fighting has been restricted to the
traditional domains of Land, Sea, and Air. Recent technologi-
cal advances have led to adding Space and Cyberspace to the
list of operational domains. With the expansion of domains
to conduct combat operations, traditional military doctrine
must be reevaluated or expanded to provide consistency across
the entire military spectrum. This challenge has presented
a plethora of opportunities for strategic debate, theoretical
analysis, and technological research.

In 2010 the Department of Defense created a new organi-
zation, the United States Cyber Command (USCYBERCOM).
Tasked as the lead for all military cyberspace actions, this new
organization is leading the effort to define and extend military
operations into Cyberspace.

Many traditional military topics have been expanded and
applied into the cyberspace domain [7]. These include the
concept of situational awareness [8], key terrain [9], and
defense in depth [10]. A basic military concept that has
received extension theoretical review is maneuver [5], [11],
[12]. Empowered by this theoretical search there has been
limited work in actually building systems that exhibit the
characteristics and behaviors of maneuver [13], [14], [15].

B. Petri Nets

Petri Nets were created by Carl Adam Petri [16] as a method
to study concurrency in parallel and distributed applications.
Petri Nets have been applied in many disciplines and extended
in multiple facets through the years. Petri Nets are extended
in use within the computer science field to model of a dis-
tributed computing system in which to study the correctness,
concurrency, and synchronization.

A Petri Net is a bipartite, weighted, directed graph com-
posed of two types of nodes called Places and Transitions and
edges called Arcs. Places represent preconditions or values of
variables in the system and are denoted as circles graphically.
Transitions represent actions taken as a result of valid precon-
ditions or values and are represented as rectangles or lines.
Since the graph is bi-partite, arcs only exist between places
and transitions. There are no arcs between two places or two
transitions. Places from which an arc originates are considered
input places to the transitions in which the arc terminates.
Places in which arcs terminate are considered output places
of the transition at the origin of the arc. Tokens, represented

Fig. 1. A basic Petri Net with four places, two transitions and four arcs.

by solid dots, indicate preconditions being true or values of
variable. Multiple Tokens can be found in places throughout
a net. The distribution of tokens over a net represents the
configuration of the system and is called the marking. Arcs
have weights that represent the number of tokens consumed
or produces as a result of transitions “firing”. When a transition
“fires” tokens from its input places are consumed and tokens
are produced in the output places. Transition can only fire
when enabled, meaning all input places have the minimum
number of required tokens. Transition firings are atomic and
nondeterministic. Multiple transitions could be enabled con-
currently, but the order in which the fire is not known and the
result of a transition firing can result enable or disable other
transitions.

A basic Petri Net with four places and two transitions is
show Figure 1. In the current marking of this Petri Net, P0
has two tokens, P1 and P2 each have one token, and P3
has no tokens. The weight of two on the arc from P0 to T0
indicates that two tokens in P0 must be present for T0 to
be enabled to fire. The weight of 2 on the arc from T1 to
P3 indicates that if T1 fires that it will place two additional
tokens in P3. These tokens are added to any tokens that may
already be present in P3.

A marking of a Petri Net is indicated as M which is a vector
of length m which is the number of places in Petri Net. Each
value of mi represents the number of token present in the
ith place. Each Petri Net has an initial marking, M0, which
describes the initial state of the system. A marking, M ′, is
said to be reachable if a series of valid transition firings from
M0 results in M ′. A way to visualize all reachable states is to
create a reachability graph that shows all reachable markings
and the transition firing sequence to each state. This graph
shows the entire state space for a Petri Net. The reachability
graph for the basic Petri Net presented above is shown in
Figure 2.

C. Stochastic Petri Nets

The basic Petri Net as describe above has been extended in
many ways in the literature [17], [18]. One such extension, is
the Stochastic Petri Net (SPN) [19] where transitions have a
delay between enabling and firing. This delay is recalculated

Fig. 2. Reachability Graph for basic Petri Net in Figure 1.

Fig. 3. A Stochastic Petri Net with firing rates for each transition shown

each time the transition becomes enabled and has an exponen-
tial distribution where each transition is assigned its own firing
rate. When multiple transitions are enabled, the transition with
the shortest delay time will fire first. Graphically, the timed
transitions are shown as unfilled rectangles, as opposed to solid
rectangles or straight lines which are immediate transitions in
the standard Petri Net. Figure 3 shown a sample SPN with
firing rates (λ0, λ1, λ2).

An SPN in which the number of tokens in a place is finite
has been shown to be equivalent to a finite Markov Chain. The
Markov Chain can be determined from the reachability graph
of the SPN and the initial marking. This makes it possible
to solve the steady-state distribution of the SPN. This steady-
state distribution allows one to analyze systems described as
stochastic Petri Nets to determine probability of the system
existing in a given state. We will use this calculation to analyze
our Defensive Maneuver Cyber Platform.

Formally, a Stochastic Petri Net can be described as a 6-
tuple PN as described in Table I.

TABLE I
FORMAL DEFINITION OF STOCHASTIC PETRI NET

SPN = (P, T,R, I,W,M0)
P = {p0, p1, ..., pm} is a finite set of places,
T = {t0, t1, ..., tn} is a finite set of transitions,
P ∩ T = ∅,
λ = {λ0, λ1, ...λn} is the set of transitions firing rates,
I = I− ∪ I+
I− ⊆ (P × T) and I+ ⊆ (T × P) are a sets of input and output arcs,
W : I → {1, 2, 3, ...} is a weight function
Mo : P → {0, 1, 2, 3, ...} is the initial marking.

D. Platform Independent Petri Net Editor (PIPE2)

The Platform Independent Petri Net Editor (PIPE2) [20]
began as a graduate course group project at the University of

London in 2003. The goal of the project was to design an
application that allows Petri Nets to be designed graphically
and analyzed.

PIPE2 is written in Java and compatible with any OS
capable of running Java programs. The system provides the
capability to create standard Petri Nets and Stochastic Petri
Net models. The tool allows a user to draw a SPN using drag-
and-drop tools on a canvas, then to save the file in an XML file
that can be opened in other applications. The tool also has the
ability to animate the model with random firing of transitions
or interactive user manipulations. The key aspect of the tool
is the wide variety of analysis model and the ability for users
to design and integrate their own custom modules. One such
module is the Steady State Analysis. This module determines
reachability graph of a SPN then calculates the steady state
distribution.

III. THE DEFENSIVE MANEUVER CYBER PLATFORM
MODEL

In an effort to provide improved cybersecurity to a dis-
tributed and parallel application, we have designed a model
of a defensive maneuver cyber platform using Stochastic
Petri Nets. In the model, we represent individual nodes that
can operate in specific modes, along with the collection of
nodes that constitute the parallel and distributed application.
We specifically apply the concepts of moving target defense
and deceptive defense to provide increased security. Individ-
ual nodes transition between operational, idle, and deceptive
modes. Additionally, overall controls of the application seek
to ensure that a minimum number of nodes remain operational
and deceptive as dictated by the current operational and threat
environment. In the event of increased adversarial activity or
indications and warnings of threat activity, the system param-
eters can be adjusted to provide a more secure environment
at the cost of operational output. Likewise, in low threat
environments, system settings can allow improved productivity
at the cost of security. It is understood that these tradeoffs in a
system of this type are both necessary and beneficial to system
administrators and executive leadership.

In our model, a distributed and parallel system is composed
of multiple individual nodes controlled by a separate central
management system. We assume that individual nodes are
worker nodes of the overall system and can be in one of three
states, operational, deceptive, or idle. We further assume that
a node does not move directly from an operational state to a
deceptive state, but goes to an idle state first, and vice versa.
The individual nodes can join or leave the cluster with minimal
operational overhead, but otherwise ensure the survivability of
the system. One such example of a systems that survives in
this manner is JUMMP [21].

Each individual node is comprised of three places (opera-
tional, idle, deceptive) and 4 transitions (operational-to-idle,
idle-to-operational, deceptive-to-idle, and idle-to-deceptive).
There are two universal places (minimum computation, min-
imum deceptive). There are eight intranode arcs between
the places and transitions for each node and an additional

six external arc from the control places into the node for
management. A single token exists within each node and the
place in which it is found determines the state of the node, as
described below. The number of nodes is configurable by the
system depending on the needs of the application designers.

Formally, a node can be describe as a Stochastic Petri Net
as shown in Table II.

A. Assumptions

We have placed some assumptions on our system to aid
in modeling. These assumptions are based on realistic expec-
tations of the system in the real world. We assume that the
system has a centralized controller that is not a target of an at-
tacker in this system. The centralized controller is responsible
for directing the node transitions between states, monitoring
the status of all nodes, and ensuring the rules and parameters
of the system are obeyed. We assume the system control
is aware of the threat conditions and can make intelligent
decisions based on this knowledge. We also assume the system
management is willing to lessen the operational throughput
when threat conditions exists that increases the probability of
adversary action exceeds a predetermined threshold.

TABLE II
DESCRIPTION OF SINGLE NODE SPN

P = {po, pi, pd}
T = {toi, tio, tdi, tid}
λ = {1.0, 1.0, 1.0, 1.0}

I− =

1 0 0 0
0 1 0 1
0 0 1 0

I+ =

0 1 0 0
1 0 1 0
0 0 0 1

W = {1, 1, ..., 1, 1}
Mo = {(1, 0, 0)|(0, 1, 0)|(0, 0, 1)}

B. Individual Node States

When a node is in the operational mode, it is an active
member of the parallel and distributed application. In an
operational state the node is storing data, processing data, or
transferring data to other operational nodes in the system. In
the instance of the application Hadoop, these nodes would be
engaged datanodes and task trackers performing MapReduce
calculations. Operational nodes are listening to known TCP
or UDP ports, creating network connections to other nodes
listening to these same ports, or transferring data on previously
connected flows. Operational nodes are susceptible to attacks
from malicious actors, but each is providing an operational
contribution as part of the purpose of the parallel and dis-
tributed application. Operational nodes, when directed by the
central management system, can transition to the idle state.
When this transition occurs we assume that the application
can continue to operate as a whole working system but with
a loss of operational capability.

An idle node is one which is available to be promoted to
becoming either an operational or a deceptive mode. In some

instances, this node could be part of a larger shared computing
resource cluster and available to other users or applications.
We assume that idle nodes are non-utilized resources that
are available but not susceptible to targeting by an attacker.
When directed by the central manager, the node transitions to
becoming either an operational node or a deceptive node.

The third mode in which an individual node can exist is
the deceptive mode. In the deceptive mode a node is indistin-
guishable from an operational node to an outside observer. An
attacker that scans the network or enumerates the environment
will be just as likely to target a deceptive node as it would an
operational node. The deceptive nodes are listening to the same
TCP / UDP ports, creating connections with other deceptive
nodes, and transferring data between each other. Additionally,
we assume that decoy nodes have honeypot programs [22]
that alert the central management system to the existence
of intruders on the network. These triggers can be used to
increase the maneuver rate of the nodes or adjust the ratio of
computational to deceptive nodes.

Fig. 4. Petri Net of Individual Node which can transition between three
modes of operation.

In the Petri Net model, each mode (operational, idle, and de-
ceptive) is represented by a place (PO, PI , PD, respectively).
There is a single token which, by its place location, represents
the mode of the node. Timed transitions allow the token to
move from operational to idle, idle to operational, deceptive
to idle, and idle to deceptive. These transitions also are fed by
arcs from the centralized control places (PNo, PNd) to ensure
the system maintains the minimum number of operational and
deceptive nodes. Figure 4 shows a single node system with
the places labeled with names. The modes for the node are
represented on the far right side of the node. The current
marking has the token in the idle place, indicating its current
state.

C. System Parameters

The Defensive Cyber Maneuver Platform is composed of
one or more individual nodes. The model has a set of
configurable parameters that allow exploration of the trade-
offs between different system designs. Parameters include the

Fig. 5. An eight node Defensive Maneuver Cyber Platform with three operational nodes, two deceptive nodes, and three idle nodes.

total number of nodes in the system, the number of nodes
that are operational, deceptive, and idle in the initial system
configuration, and the upper and lower bounds of the number
of nodes for each of these states. The parameters can be used
to compare tradeoffs of different configurations.

The system has a total number of N nodes. Each node
is a single whole node as described above. The system has a
minimum number of nodes that must remain in the operational
and deceptive states, these are described with the variables O
and D. Since Petri Net transitions are atomic and nodes can
not transfer directly between operational and deceptive states
but must move to the idle state, then N > O +D must hold
true for the system in all configurations.

In order to ensure the stability of the maneuver system,
the minimum number of operation and deceptive nodes is
managed by the system controls with the two places PNo

and PNd. These places are initialized with O and D tokens,
respectively. An input arc exists between each control place
and the transition to the idle state. This arc is weighted to
O+1 and D+1 with an output arc back to the control place
with weight O and D, respectively. This ensures that a node
that transitions into the idle state leaves at least the minimum
nodes in its former state, thus not violating the minimal levels
set by the system designers. Additional, any transition from
idle to operational or deceptive states will deposit a token in
the control place. The control place acts as a counter of nodes
in its state.

D. Maneuver Platform Builder

The defensive cyber maneuver system is modeled as a
Stochastic Petri Net. We use the Platform Independent Petri
Net Editor (PIPE2) [20] to view and evaluate the system.
PIPE2 provides a graphical user interface for drawing and
building Petri Nets. These nets can then be saved in a Petri
Net Markup Language compatible file for use in other PNML
tools. PNML is an extension of XML as defined by the
standard ISO/IEC 15909 Part 2 [23].

In order to aid in the creation of Petri Nets of our ma-
neuverable system, we designed and developed a maneuver
platform builder that automates the creation of the nets. The
builder extends the standard XML libraries that currently exist
in Python. This custom software tool, called buildDMCP
takes command line parameters of (N,O,D). The output of
the program is a PNML file that can be opened in PIPE2 or
any other PNML compatible tool.

The buildDMCP tool takes an object oriented approach
by defining the building blocks for Petri Nets in general.
Functions to build places, transitions and arcs are developed
with optional parameters. Using these building blocks, the
code builds a single node of our maneuverable system with
the respective places, transitions, and arcs. Additionally, the
system control are created and connected to the node at the
specified locations. Finally, depending on the user provided
parameters, the total number of nodes and minimal levels for
computational and deceptive nodes are built.

The resultant Petri Net has all the places, transitions, and
initial markings specified by the user. Additionally, these items
are organized and placed on the canvas in a visually appealing
manner. Animations and analysis of the nets are done within
the PIPE2 application. Figure 5 shows defensive cyber model
with N = 8, O = 3, and D = 2 created with buildDMCP
and visualized in PIPE2. P0 and P1 in this figure represent
the centralized control mechanism of the system (PNo and
PNd). These places maintain a count of the current number
of operational and deceptive nodes. When a node transitions
from idle to either operational or deceptive states, a token is
deposited into these places. In order for a node to transition
from either operational or deceptive, there must exist O + 1
or D+1 tokens in these places, respectively. In the SPN, this
is modeled with output arcs of weight O + 1 or D + 1 and
input arcs of weight O or D.

IV. ANALYSIS

To understand the trade-offs between security and opera-
tions in our system, we provide some analysis of the Defensive

Maneuver Cyber Platform. Understanding the characteristics
and behaviors of the system under different configurations
will allow system designers and administrators to choose
implementations to meet their operational needs. Additionally,
this improved understanding of the system will improve our
future efforts to build prototype software packages base on
this model. We will focus our analysis on enumerating the
potential states of the system and studying how adjusting the
transition firing rates affects the state distribution probability.

A. Enumerating and Categorizing State Space

Initially, we want to study how the parameters of the
configuration affect the state space in which the system can
exist. The Defensive Maneuver Cyber Platform is specified
with three global parameters, N , O, and D. The current state
of the system can be described as a vector C of length N
where each element Cj represents the state (So, Sd, Si) of
node jth in the system. The total number of nodes in each
state can be represented by the variables (o, d, i). For each
state or marking with equal counts of nodes in each state can
be in multiple combinations. It can be shown that the total
number of states or markings, M , of the Petri Net is defined
by Equation 1

|M | =
N−O∑
d=D

N−d∑
o=O

N !

o! d! i!

i = N − o− d

(1)

This equation is a summation over the range of two variables
that describe the count of computation and deceptive nodes.
The equation is similar to the computation of multistate
combinations, since with have N nodes that can be either op-
erational, deceptive or idle. The number of operational nodes
ranges from the system specified minimum to all remaining
nodes after preserving the minimal level of deceptive nodes.
Likewise, the deceptive node count ranges from the defined
minimal level to all other nodes minus the minimal operational
nodes.

The size of the state or marking space of the Defensive
Maneuver Cyber Platform is affected by the three variables
of the system. It can be shown the maximum state space for
a given N is indirectly proportional to the minimum levels
of operation and deceptive nodes (O and D). This allows
the summation to have a larger range, thus resulting in the
maximum state space. The minimal size of the state space is
calculated when you maximize O and minimize D or vice
versa. This results in only one possible value of o and d in
the system.

Figure 6 plots the minimum and maximum values of the
state space over the range 8 ≤ N ≤ 128. As the graph shows,
the maximum is on the order of expn where the minimum is
on the order of log n.

These states can be broken down into groups that determine
the maneuverability of the cluster. The maneuverability of the
cluster is a measure of the amount that nodes can change

from one state to the next. An idle node is always eligible
to change state, where operational and deceptive nodes can
only maneuver if the current count of nodes is greater than
the minimum levels. When the current state of the system
has o = O and d = D the system is considered minimally
maneuverable because only the N − O − D idle nodes can
maneuver. When the system has more of both operational and
deceptive node than the minimum configuration ((o > O) and
(d > D)) then the system is considered fully maneuverable
since all nodes can maneuver at the next moment.

The reachability graph includes in and out edges between
markings. These edges are related to the transitions and arc of
the SPN. Quantifying the number of edges in the reachability
graph is required to calculate the entire state space of the
system. It can be shown that the number of edges is greater
than the number of states. Calculating all out edges is equal to
the edges of the system since all edges can be considered in
and out edges. Minimally, maneuver states have the minimum
number of out edges. This is equal to the N−O−D. The state
with the most adjacent states is when o = O+1 and d = D+1.
This is a fully maneuverable state with maximum idle nodes.
Thus the number of adjacent states is 2N −O−D− 2 since
each idle node can maneuver to operational or deceptive, while
each operational and deceptive node can maneuver to idle.
Without specific definition, it can be stated that the number
of edges in a graph is on the order of n ∗ |M |. This is an
important distinction when solving the steady state probability
distribution for the SPN.

Fig. 6. Scale of N

B. Transition Firing Rate Impact
Stochastic Petri Nets have transitions that fire with an

exponentially distributed random variable firing delay. Each
transition j has a rate λj used to calculate the delay. We have
studied the effect that the firing rate has on the probability
distribution of the steady state of the system.

Since an SPN is isomorphic to a continuous time Markov
chain, the steady state distribution π of an SPN can be solved
by using the transition rate matrix Q, where Q is the rate
between states of the reachability graph and diagonals are the
negative sum. As shown earlier, Q is a very sparse matrix and
its dimensions grow very fast with N .

PIPE2 provides a module for determining the reachability
graph and conducting the steady state analysis. We use this
tool to study the probability distribution for our system and
the firing rate impact on the distribution. It can be shown with
all transition firing rates equal, the Defensive Maneuver Cyber
Platform markings are equally likely.

We began by grouping the transitions in each node into
pairs. One group (Tio, Tdi) maneuvers the individual towards
operational while the second group (Toi, Tid) maneuvers to-
wards deceptive. Varying the rate of the firing rates of the two
groups changes the state space probability distribution of the
entire cluster. We grouped each possible state by the number
of operational nodes (the marking of PNo) and calculated
their combined probabilities. This way we are able to see how
the transition firing rates impact the probably the system has
various levels of computational state.

Using an 8-3-2 Defensive Maneuver Cyber Platform as an
example, the reachability graph of the SPN has 2478 nodes,
or valid markings. The range of the number of computational
nodes is (3, 6) while we can have (2, 5) deceptive nodes.
Figure 7 shows probability over the range of operational node
counts when the ratio of the maneuver rate to the deceptive
rate is varied. The same analysis of the deceptive count of the
system is left as future work.

Fig. 7. Maneuver Rate effect on Probability of Computational State

V. RELATED WORKS

Moving target defense (MTD) has recently received a great
deal of attention [24], [25], [26], [27], [28], [29], [30]. In [24],

the authors addressed basic research challenges and how MTD
can be deployed using asymmetric cost techniques that are
advantageous for the defenders and disadvantageous for the
attackers. In [25], the authors explored the effectiveness of
MTD protection mechanisms. A model for dynamic diversity
defense is proposed. In [26], an OpenFlow Random Host
Mutation (OF-RHM) scheme is introduced to use OpenFlow
to efficiently assign different addresses to hosts and protect
against internal and external scanning. In [27], the authors de-
veloped a Moving Target IPv6 Defense (MT6D) that leverages
the immense address space of IPv6 to hide and rotate IPv6
assignments by implementing MT6D tunneled packet. The
two goals of MT6D is to maintain user privacy and protecting
against targeted network attacks. A similar functionality in the
form of a Linux hypervisor is provided by [31]. In [28], the
authors described an approach to inject artificial diversity into
system for use as cyber maneuvers in a moving target defense,
which employs uses control theoretic principles. The maneu-
vers discussed in this work include memory randomization,
IP address randomization and applying a new state machine
with random extra states for protocols like DHCP. In [29], a
concept of Random Route Mutation (RRM) is introduced and
algorithms are defined to achieve optimal path randomization
between a source and a destination. In [30], a basic design
schema of a moving-target network defense system is pre-
sented and a simulation-based study is conducted to explore
the degree to which proactively changing a network’s various
parameters can decrease an adversary’s chance for success.

Some research efforts have been devoted to security mod-
eling and analysis using SPN [32], [33], [34]. In [32], an
approach using generalized stochastic Petri nets (GSPNs) to
model and analyze attack trees is proposed with the ultimate
goal of automating the analysis using simulation tools. The
results of this simulation and analysis can then be used to
further refine the attack tree or to develop corresponding coun-
termeasures. In [33], a vulnerability assessment framework
is proposed to systematically evaluate the vulnerabilities of
SCADA systems at three levels: system, scenarios, and access
points using a generalized stochastic Petri net model. The
proposed method is based on cyber systems embedded with the
firewall and password models, the primary mode of protection
in the power industry. In [34], the authors investigated the
use of Petri nets for modeling coordinated cyber-physical
attacks on the smart grid. A hierarchical method is provided
to construct large Petri nets from a number of smaller Petri
nets that can be created separately by different domain experts
for analyzing cyber-physical attacks.

VI. CONCLUSION

In this paper, we have introduced a model of a defensive
maneuver cyber platform utilizing Stochastic Petri Nets. By
utilizing moving target defense and deceptive defense tactics,
we have shown that we can increase the complexity and com-
position of a parallel and distributed application by increasing
the ratio of deceptive to operational nodes and increasing
the rate in which nodes transition between states. We have

theorized these characteristics can present a more defendable
platform due to the changing attack surface. Lastly, we have
introduced an automated tool for building configurable Petri
Nets for use in tools compatible with the Petri Net Markup
Language.

In the future, we will continue to refine our model and add
an attacker model to provide improved analytic functions. By
using Hadoop as a sample distributed and parallel application,
we will investigate building a prototype system on our campus
that behaves as indicated by our model. Our current work
mainly focuses on distributed and parallel applications. We
may generalize our model to support other platforms, even
traditional networks. With a prototype system and human
and automated penetration testers, we desire to deploy our
system into a sandbox to study real world survivability of a
system built on this model. The Defensive Maneuver Cyber
Platform could be used as a defensive mechanism when the
threat condition changes. Using these results, we can further
explore how a prototype system could be built that updates the
maneuver rates during run-time to build a more deceptive or
computation cluster as conditions dictate. We are encouraged
by these results and believe they have presented introductory
results to encourage further exploration into understanding
the behaviors of a system that maneuvers individual nodes
between operational, deceptive and idle states while continuing
to provide a computational resource to the users and commu-
nity.

REFERENCES

[1] “Indicted man pleads guilty to hacking government
supercomputers.” [Online]. Available: http://www.scmagazine.com/
indicted-man-pleads-guilty-to-hacking-government-supercomputers/
article/309445/

[2] R. Chirgwin and . M. 2014, “Kiwis unplug supercomputer after
intrusion.” [Online]. Available: http://www.theregister.co.uk/2014/05/26/
kiwis unplug niwa super after intrusion spotted/

[3] L. Nixon, “The stakkato intrusions: What happened and what have we
learned?” in Sixth IEEE International Symposium on Cluster Computing
and the Grid, 2006. CCGRID 06, vol. 2, May 2006, pp. 27–27.

[4] U. S. Army, “Field manual 3-0: Operations,” 2008.
[5] S. Applegate, “The principle of maneuver in cyber operations,” in 2012

4th International Conference on Cyber Conflict (CYCON), 2012, pp.
1–13.

[6] W. J. Lynn, “Defending a new domain: The pentagon’s cyberstrategy,”
Foreign Affairs, 2010. [Online]. Available: http://www.jstor.org/stable/
20788647

[7] R. Parks and D. Duggan, “Principles of cyberwarfare,” IEEE Security
Privacy, vol. 9, no. 5, pp. 30–35, Sep. 2011.

[8] J. Dressler, W. Moody, J. Koepke, and C. Bowen, “Operational data
classes for establishing situational awareness in cyberspace,” in Cyber
Conflict (CyCon), 2014 6th International Conference on, June 2014, pp.
1–8.

[9] D. Raymond, G. Conti, T. Cross, and M. Nowatkowski, “Key terrain in
cyberspace: Seeking the high ground,” in Cyber Conflict (CyCon), 2014
6th International Conference on, June 2014.

[10] W. Tirenin and D. Faatz, “A concept for strategic cyber defense,” in IEEE
Military Communications Conference Proceedings, 1999. MILCOM
1999, vol. 1, 1999, pp. 458–463 vol.1.

[11] D. B. Farmer, “Do the principles of war apply to cyber war?” Tech.
Rep., May 2010.

[12] P. K. Singh, “Maneuver warfare in cyberspace,” DTIC Document,
Tech. Rep., 1997. [Online]. Available: http://oai.dtic.mil/oai/oai?verb=
getRecord&metadataPrefix=html&identifier=ADA525962

[13] P. Beraud, A. Cruz, S. Hassell, J. Sandoval, and J. Wiley, “Cyber defense
network maneuver commander,” in 2010 IEEE International Carnahan
Conference on Security Technology (ICCST), Oct. 2010, pp. 112–120.

[14] P. Beraud, A. Cruz, S. Hassell, and S. Meadows, “Using cyber maneuver
to improve network resiliency,” in MILITARY COMMUNICATIONS
CONFERENCE, 2011 - MILCOM 2011, Nov. 2011, pp. 1121–1126.

[15] S. Hassell, P. Beraud, A. Cruz, G. Ganga, S. Martin, J. Toennies,
P. Vazquez, G. Wright, D. Gomez, F. Pietryka, N. Srivastava, T. Hester,
D. Hyde, and B. Mastropietro, “Evaluating network cyber resiliency
methods using cyber threat, vulnerability and defense modeling and
simulation,” in MILITARY COMMUNICATIONS CONFERENCE, 2012
- MILCOM 2012, Oct. 2012, pp. 1–6.

[16] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[17] C. Ramchandani, “ANALYSIS OF ASYNCHRONOUS CONCUR-
RENT SYSTEMS BY TIMED PETRI NETS,” Massachusetts Institute
of Technology, Cambridge, MA, USA, Tech. Rep., 1974.

[18] K. Jensen, “Coloured petri nets,” in Petri Nets: Central Models and
Their Properties, ser. Lecture Notes in Computer Science, W. Brauer,
W. Reisig, and G. Rozenberg, Eds. Springer Berlin Heidelberg, Jan.
1987, no. 254, pp. 248–299.

[19] M. Ajmone Marsan, G. Conte, and G. Balbo, “A class of generalized
stochastic petri nets for the performance evaluation of multiprocessor
systems,” ACM Trans. Comput. Syst., vol. 2, no. 2, p. 93122, May 1984.

[20] N. J. Dingle, W. J. Knottenbelt, and T. Suto, “PIPE2: a tool for the per-
formance evaluation of generalised stochastic petri nets,” SIGMETRICS
Perform. Eval. Rev., vol. 36, no. 4, p. 3439, Mar. 2009.

[21] W. Moody, L. Ngo, E. Duffy, and A. Apon, “JUMMP: Job uninterrupted
maneuverable MapReduce platform,” In Proceedings of 2013 IEEE
International Conference on Cluster Computing, Sep. 2013.

[22] L. Spitzner, Honeypots: tracking hackers. Addison-Wesley Reading,
2003, vol. 1.

[23] J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer,
L. Petrucci, R. Post, C. Stehno, and M. Weber, “The petri net markup
language: Concepts, technology, and tools,” in Applications and Theory
of Petri Nets 2003, ser. Lecture Notes in Computer Science, W. van der
Aalst and E. Best, Eds. Springer Berlin Heidelberg, 2003, vol. 2679,
pp. 483–505.

[24] S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S. Wang, Moving
Target Defense. Springer, 2011.

[25] D. Evans, A. Nguyen-Tuong, and J. Knight, “Effectiveness of moving
target defenses,” in Moving Target Defense. Springer, 2011, pp. 29–48.

[26] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host
mutation: transparent moving target defense using software defined
networking,” in Proceedings of the first workshop on Hot topics in
software defined networks. ACM, 2012, pp. 127–132.

[27] M. Dunlop, S. Groat, W. Urbanski, R. Marchany, and J. Tront, “Mt6d:
A moving target ipv6 defense,” in MILITARY COMMUNICATIONS
CONFERENCE, 2011-MILCOM 2011. IEEE, 2011, pp. 1321–1326.

[28] J. Rowe, K. Levitt, T. Demir, and R. Erbacher, “Artificial diversity as
maneuvers in a control-theoretic moving target defense,” in Moving
Target Research Symposium, 2012.

[29] E. Al-Shaer, Q. Duan, and J. H. Jafarian, “Random host mutation for
moving target defense,” in Security and Privacy in Communication
Networks. Springer, 2013, pp. 310–327.

[30] R. Zhuang, S. Zhang, S. A. DeLoach, X. Ou, and A. Singhal,
“Simulation-based approaches to studying effectiveness of moving-target
network defense,” in National Symposium on Moving Target Research,
2012.

[31] J. Yackoski, H. Bullen, X. Yu, and J. Li, “Applying self-shielding
dynamics to the network architecture,” in Moving Target Defense II.
Springer, 2013, pp. 97–115.

[32] G. Dalton, R. F. Mills, J. M. Colombi, and R. A. Raines, “Analyzing
attack trees using generalized stochastic petri nets,” in Information
Assurance Workshop, 2006 IEEE. IEEE, 2006, pp. 116–123.

[33] C.-W. Ten, C.-C. Liu, and G. Manimaran, “Vulnerability assessment of
cybersecurity for scada systems,” Power Systems, IEEE Transactions on,
vol. 23, no. 4, pp. 1836–1846, 2008.

[34] T. M. Chen, J. C. Sanchez-Aarnoutse, and J. Buford, “Petri net modeling
of cyber-physical attacks on smart grid,” Smart Grid, IEEE Transactions
on, vol. 2, no. 4, pp. 741–749, 2011.

